Effect of Piper guineensees on physicochemical and organoleptic properties of watermelon (Citruluslanatus) juice stored in refrigerator and ambient

Atanda SA1*, Agboola AA1, Adeniyi BM1, Odehunmi BK2, Obong RU2, Onyekwere JI2, Abiiba OI2

1. Nigerian Stored Products Research Institute 32/34 Barikisulyede Street off University of Lagos Road PMB12543 Lagos
2. Department of Food Science and Technology Yaba College of Technology PMB 2011 Yaba Lagos
*Corresponding author email: abimbola91@yahoo.com

ABSTRACT

Extracted juice from watermelon containing 0.01g Piper guineensees stored in refrigerator (6±2 °C) and on the shelf (28±1°C) using polyethylene bottles was evaluated for physicochemical and organoleptic changes. pH, total soluble sugars, titratable acidity and organoleptic evaluation of the juice was carried out until deterioration sets in. Results showed that the sample stored in the refrigerator kept for 7 days while the sample on the shelf lasted for 3 days. pH value decreased from 5.40 to 4.80 and 5.70 for the sample stored in the refrigerator and on the shelf respectively while TSS increased from 0.064%Brix to 0.435% Brix and 0.578%Brix for sample stored in refrigerator and shelf respectively. Titratable acidity decreased from 2.90 % to 0.20% and 0.50% for samples in the juice stored in the refrigerator and shelf respectively. All these changes were statistically significant (p<0.05). The sample stored on the shelf lost its organoleptic qualities on the third day with an average value less than 2 for taste, smell and colour. However, the juice stored in the fridge lost its organoleptic qualities at the 7th day with an average value of 3.0, 2.90 and 2.80 for taste, smell and colour respectively. From the results, juice extracted from watermelon cannot be kept at ambient temperature beyond 3 days without proper refrigeration and an additive. This calls for alternative way of extending its shelf life in the absence of electricity supply using local spice like P. guineensees and to make it available during off season.

Key words: Brix; pH; quality; shelf life; titratable acidity; total soluble sugar

Introduction

Fruit is a structural part of plant that contains seeds, normally fleshy, sweet and edible in the raw states, which include: oranges, grapes, strawberries, juniper berries, pineapple, and watermelon etc. All contain a high percentage of water averaging 85%. Fat, protein and carbohydrate (cellulose and starch) are present in small amount (Akande and Ojekemi, 2013; Mauseth, 2003). Fruits are best consumed in fresh form however due to their high perishable nature and seasonality, they are scarce and expensive and the consumption level changes with season. Processing and preservation of these fruits becomes paramount if they must be made available throughout the year. Fruits can be processed into pickled, frozen, and canned fruits, fruit juices, dehydrated juice and wine (Eziaghighala et al., 2010). Juices are the presses of fruits obtained by mechanical (fermentable and unfermented) processes. Juices have characteristics colour, odour and flavour, typical of the fruit they came from (Alan and Sutherland, 1994). Watermelon contains almost 92% water, chlorophyll, vitamins A, B1, B6, and C. It is also rich in lycopene (a red pigment responsible for making watermelon a good anti-carcinogenic fruit), and a good source of minerals such as zinc, potassium, magnesium, and iodine and other digestive enzymes. Watermelon can be viewed as a more nutritious alternative to having energy drinks or supplements prior to exercise Watermelon gives more nutrients per calorie because of its higher water content and lower calorie unlike other fruits (www. juicenut.com, 2015; Alam et al., 2012; Eziaghighala et al., 2010). It is therefore ranked one of the best fruits for human consumption because of its nutritional and medical benefits. Watermelon deteriorates faster than other fruits due to its high moisture content and this characteristic makes
it highly susceptible to microbial spoilage caused by gram positive bacteria which are very sensitive to low acidity (Erukainure et al., 2010; Mossel et al., 1995). This gives watermelon a skunky taste and an obvious change in the colour and flavour of the juice. This deterioration may be delayed or curbed by the use of refrigeration and preservatives. Piper guineense is a spice derived from its dried fruit is known as West African pepper, Ashanti pepper, Benin pepper, false cubeb, Guinea cubeb, uziza pepper or (ambiguously) "Guinea pepper", and called locally kale, kukauabe, masoro, sasema and sorowisa. It used as flavouring for stews, increases bioavailability of nutrients, weight and stress management, preservative, antimicrobial and anti-oxidant (Katzer, 2015; www.xtend-life.com; Udensi and Odom, 2012 ; Kiin-Kabari et al., 2011). Babarinde et al., (2015) and Omodamiroand Ekeleme have reported the preservative potentials, antioxidant and antimicrobial activities of P. guineenses respectively. The temperature of the storage conditions which juices are subjected to can affect its deterioration rate and even its chemical qualities or attributes, positively or negatively. Thus, the aim and objective of this research is to evaluate the physicochemical and organoleptic changes associated with storage of watermelon juice spiced with P. guineenses in a refrigerator and at ambient.

Materials And Methods
Juice extraction and spice preparation
Watermelon (citrulluslanatus) that was free from defect was obtained from Oyingbo market in Lagos State. Watermelon was transported using a plastic crate to Nigerian Stored Products Research Institute Processing Centre Lagos State, Nigeria. The fruits were thoroughly washed repeatedly with tap water to remove dirt before cutting prior to juice extraction. All glassware and knives were autoclaved at 121°C for 45 min and all other equipment was sanitized with 1 % hypochlorite solution prior to usage. The fruit was then peeled with a sharp kitchen knife and the rind and seeds was removed to get the pulp (edible portion). The pulp was cut into thin slices and crushed in a blender to obtain a homogenous mass which was then sieved using a muslin cloth into two clean bowls. The resulting juice was quantitatively transferred into a 50 mL polythene bottles. Screened seeds of P. guineenses were grinded using a mill and sieved to obtain a fine powder. They were transferred into a polythene packaging material for subsequent use. 0.01 g of finely grinded P. guineenses was added to 50mL of extracted juice. The set up was made in triplicates for both treatments (refrigerator and ambient). A sample containing no P. guineenses stored on the shelf was used as a control. The shelf-stored juice were used as control in evaluating the organoleptic and physicochemical properties of the juice samples for the storage period.

Physicochemical Analysis
Titratable acidity, total soluble sugars and pH were carried out on the fresh juice and stored samples in both refrigerator and on the shelf using standard methods.

Total Soluble Solids
Total soluble solids (TSS) content of a solution was determined by the index of refraction as described by Tigist et al., (2013). An aliquot of juice was extracted using a juice extractor and 50 ml of the slurry was filtered using cheesecloth. The TSS was determined by Abbe refractometer with a range of 0 to 32 °Brix and a resolution of 0.2 °Brix by placing 1 to 2 drops of clear juice on the prism. Between samples the prism of the refractometer was washed with distilled water and dried before use. The refractometer was standardized against distilled water (0 °Brix TSS). The values were reported on %Brix.

pH
pH was carried out according to the procedure described by AOAC (1990). 5 mL of the juice (fresh and stored) was used for pH measurement using Jenway 3310 pH meter which have been previously calibrated with buffers of 4 and 9.

Titratable Acidity
Titratable acidity was carried out according to the procedure described by Tigist et al., (2013). An aliquot of the juice was titrated against standard sodium hydroxide solution. The titratable acidity expressed was percentage citric acid.

Organoleptic Evaluation
Organoleptic evaluation was carried out on the juice samples at the initial stage and during the storage period consecutively by 10 semi-trained panelists. A five-point hedonic scale was utilized based on the procedure adopted by Wakoma and Azigba (2001).They assessed the taste, colour, and smell of the samples using the five-point hedonic scale, where 1 = poor, 2= fair, 3= good, 4=better and 5 = excellent. A cut off mark of 3 was selected as a basis for acceptability.
Statistical Analysis

The data obtained were analyzed and interpreted by analysis of variance (ANOVA) test at a level of 5% of significance, using SPSS Version 20.0 software (SPSS Inc., USA). Values were presented as mean ± standard deviations of 3 replicates.

Results And Discussion

The physicochemical tests and organoleptic assessment results of the fruit juice from watermelon containing P. guineenses are presented in Table 1. The pH values of extracted juice containing the spice in refrigerator gradually reduced from an initial value of 5.40 to 4.80 on the 7th day while samples containing spice on the shelf increased to 5.70 on the third day. The control had a pH value of 6.20 on the second day. The observations were statistically significant (p<0.05). This decrease might be attributed to the effect of low temperature and P. guineense. P. guineenses due to its anti-microbial activity inhibit the growth of micro-organisms which might have cause certain biochemical reactions leading to production of compounds like ethanol, aldehydes etc. The low pH is an indicator of acidity and it signify good keeping quality. This is similar to result obtained by Akande and Ojekemi, (2013) and Tigist et al., (2013). There was an increase in the titratable acidity of all samples in both refrigerator and on the shelf. Titratable acidity increased from an initial value of 0.064 % of citric acid to 0.578 % citric acid at the 7th day for sample in the refrigerator and to 0.541 % of citric acid at the third day for sample on the shelf. This increase might be attributed to higher rate of hydrolysis of organic acids notably citric acid. This is not in agreement with Akande and Ojekemi, (2013) that reported the level of titratable acidity in water melon juice and pineapple juice blend remaining constant during five weeks of storage. However, it was in agreement with Alam et al., (2012) that reported increase in acidity value for pasteurized watermelon juice stored for three months at 4°C-15°C.

Total Soluble Sugars of samples in the refrigerator and on the shelf decreased during the period of storage. TSS decreased from an initial value of 2.90 %Brix to 1.80% Brix at the end of 7th day storage for the sample stored in refrigerator while it decreased to 2.10%Brix at the 3rd day of storage for the sample on the shelf. These observed trends were statistically significant (p<0.05), however, the decrease in refrigerated sample was gradual compared to the sample on the shelf. This might be due to the fact that hydrolysis of sugar might have been slow down due to storage temperature and the addition of P. guineenses. This is in agreement with Akande and Ojekemi, (2013). More so, since TSS is a sum of sum of sugars, some acids and some minor components, micro-organisms might use some of the components as substrates for growth (Chakraborty et al., 2007).

The organoleptic evaluation of samples stored in refrigerator showed that taste, odour and colour values decreased from an initial value of 5.0 to 3.5, 3.0 and 2.0 respectively within a period of 7 days while taste, odour and colour of samples stored on the shelf decreased from an initial value of 5.0 to 2.50, 2.0 and 1.5 respectively within a period of 3 days. Changes in the organoleptic attributes during the storage period may be due to a combination of biochemical and microbial changes. Overall, the organoleptic evaluation of samples stored in refrigerator was considered acceptable within 7 days of storage.

Table 1.mean values of physicochemical and organoleptic attributes of water melon juice containing P. guineenses stored in refrigerator and on the shelf (n=3)

<table>
<thead>
<tr>
<th>Day</th>
<th>Storage</th>
<th>Taste</th>
<th>Odour</th>
<th>Colour</th>
<th>TSS (%Brix)</th>
<th>pH</th>
<th>Titratable Acidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Refrigerator</td>
<td>5.00±0.00</td>
<td>5.00±0.00</td>
<td>5.00±0.00</td>
<td>2.90±0.01</td>
<td>5.40±0.01</td>
<td>0.064±0.03</td>
</tr>
<tr>
<td></td>
<td>Shelf</td>
<td>5.00±0.00</td>
<td>5.00±0.00</td>
<td>5.00±0.00</td>
<td>2.90±0.01</td>
<td>5.60±0.02</td>
<td>0.069±0.01</td>
</tr>
<tr>
<td>2</td>
<td>Refrigerator</td>
<td>5.00±0.00</td>
<td>5.00±0.00</td>
<td>5.00±0.00</td>
<td>2.60±0.04</td>
<td>5.20±0.01</td>
<td>0.154±0.02</td>
</tr>
<tr>
<td></td>
<td>Shelf</td>
<td>4.25±0.00</td>
<td>3.00±0.00</td>
<td>4.00±0.00</td>
<td>2.60±0.04</td>
<td>5.70±0.03</td>
<td>0.211±0.01</td>
</tr>
<tr>
<td>3</td>
<td>Refrigerator</td>
<td>4.50±0.00</td>
<td>4.00±0.00</td>
<td>4.00±0.00</td>
<td>2.10±0.03</td>
<td>5.00±0.01</td>
<td>0.358±0.02</td>
</tr>
<tr>
<td></td>
<td>Shelf</td>
<td>2.50±0.00</td>
<td>2.00±0.00</td>
<td>1.90±0.00</td>
<td>2.00±0.01</td>
<td>5.70±0.01</td>
<td>0.455±0.01</td>
</tr>
<tr>
<td>4</td>
<td>Refrigerator</td>
<td>4.30±0.00</td>
<td>3.80±0.00</td>
<td>3.80±0.00</td>
<td>2.00±0.00</td>
<td>5.00±0.00</td>
<td>0.455±0.00</td>
</tr>
<tr>
<td></td>
<td>Shelf</td>
<td>4.00±0.00</td>
<td>3.50±0.00</td>
<td>3.70±0.00</td>
<td>1.90±0.03</td>
<td>4.90±0.01</td>
<td>0.515±0.02</td>
</tr>
<tr>
<td>5</td>
<td>Refrigerator</td>
<td>3.30±0.00</td>
<td>2.90±0.00</td>
<td>3.00±0.00</td>
<td>1.90±0.01</td>
<td>4.90±0.01</td>
<td>0.541±0.03</td>
</tr>
<tr>
<td></td>
<td>Storage</td>
<td>3.00±0.00</td>
<td>2.90±0.00</td>
<td>2.80±0.00</td>
<td>1.80±0.01</td>
<td>4.80±0.02</td>
<td>0.578±0.00</td>
</tr>
</tbody>
</table>

Conclusion

The result obtained from this study indicated that storage temperature and the addition of P. guineenses have a profound effect on the physicochemical and organoleptic attributes on watermelon juice. However, the effect of pasteurization, microbial analysis and use of different dosage of P. guineenses need to be investigated further to ascertain the overall quality of the juice.

References
Akande EA, Ojekemi OR. 2013. Biochemical changes in watermelon and pineapple juice blend during storage. Sky Journal of Food Science. 2(7): 54 - 58

Babarinde GO, Adogheke OG, Akinoso R, Adokanye BR. 2015. Preservative potentials of Piper guineense on Roma tomato (Solanum lycopersicum) fruit. World Academy of Science, Engineering and Technology Nutrition and Food Sciences. 2 (7): 50-56

Chakraborty I, Vanlallian CA, Hazra P. 2007. Studies on processing and nutritional processing and nutritional qualities of tomato as influenced by genotype and environment, Veg. Sci. 34:26-31


Eziaghigba OY, Iwe MO, Agrirga AN. 2010. Proximate and sensory properties of fruit juice produced from varieties of watermelon (Citrullus lanatus).


Udensi EA, Odom TC, Dike CO. 2012. Comparative Studies of Ginger (Zingiber officinale) and West African Black Pepper (Piper guineense) extracts at different concentrations on the microbial quality of soymilk and kunun-zaki. Nigerian Institute of Food Journal 30(2): 38 – 43
